MetaBinG: Using GPUs to Accelerate Metagenomic Sequence Classification
نویسندگان
چکیده
Metagenomic sequence classification is a procedure to assign sequences to their source genomes. It is one of the important steps for metagenomic sequence data analysis. Although many methods exist, classification of high-throughput metagenomic sequence data in a limited time is still a challenge. We present here an ultra-fast metagenomic sequence classification system (MetaBinG) using graphic processing units (GPUs). The accuracy of MetaBinG is comparable to the best existing systems and it can classify a million of 454 reads within five minutes, which is more than 2 orders of magnitude faster than existing systems. MetaBinG is publicly available at http://cbb.sjtu.edu.cn/~ccwei/pub/software/MetaBinG/MetaBinG.php.
منابع مشابه
Accelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملGPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering
Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ...
متن کاملGHOSTM: A GPU-Accelerated Homology Search Tool for Metagenomics
BACKGROUND A large number of sensitive homology searches are required for mapping DNA sequence fragments to known protein sequences in public and private databases during metagenomic analysis. BLAST is currently used for this purpose, but its calculation speed is insufficient, especially for analyzing the large quantities of sequence data obtained from a next-generation sequencer. However, fast...
متن کاملA Massively Parallel Sequence Similarity Search for Metagenomic Sequencing Data
Sequence similarity searches have been widely used in the analyses of metagenomic sequencing data. Finding homologous sequences in a reference database enables the estimation of taxonomic and functional characteristics of each query sequence. Because current metagenomic sequencing data consist of a large number of nucleotide sequences, the time required for sequence similarity searches account ...
متن کاملProspecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach.
DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011